5 Prove that

$$\mathbf{a} \quad (\sin x + \cos x)^2 \equiv 1 + 2\sin x \cos x$$

$$\mathbf{b} \quad \frac{1}{\cos x} - \cos x \equiv \sin x \tan x, \quad \cos x \neq 0$$

$$\mathbf{c} \quad \frac{\cos^2 x}{1 - \sin x} \equiv 1 + \sin x, \quad \sin x \neq 1$$

$$\mathbf{d} \quad \frac{1+\sin x}{\cos x} \equiv \frac{\cos x}{1-\sin x}, \quad \cos x \neq 0$$

a Prove the identity

$$(\cos x - \tan x)^2 + (\sin x + 1)^2 \equiv 2 + \tan^2 x.$$

b Hence find, in terms of π , the values of x in the interval $0 \le x \le 2\pi$ such that

$$(\cos x - \tan x)^2 + (\sin x + 1)^2 = 3.$$

$$f(x) \equiv \cos^2 x + 2\sin x, \quad 0 \le x \le 2\pi.$$

a Prove that f(x) can be expressed in the form

$$f(x) = 2 - (\sin x - 1)^2.$$

b Hence deduce the maximum value of f(x) and the value of x for which this occurs.

Simplify each trig expression. (6 pts)

1)
$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x}$$

$$\frac{(1+5)(2)(1+5)(2)}{(1+5)(2)(2052)} + \frac{(1+5)(2)(1+5)(2)}{(1+5)(2)(2052)}$$

- = $\frac{\cos^2 x + 1 + 25 \sin^2 x + 5 \sin^2 x}{(1 + 5 \sin x)(\cos x)}$
- = 1+1+251n= COS X (HSinx)
- = 2+25inx <05x(1+5inx)
- = 2(1+sinx) cosx(1+sinx)
- = 2

2) $\sin x - \sin x \cos^2 x$

No 11m11c

Simplify each of the following expressions:

a
$$1 - \cos^2 \frac{1}{2}\theta$$

b $5 \sin^2 3\theta + 5 \cos^2 3\theta$

c $\sin^2 A - 1$

$$\mathbf{d} \; \frac{\sin \theta}{\tan \theta}$$

$$e \frac{\sqrt{1-\cos^2 x}}{\cos x}$$

$$\mathbf{f} \quad \frac{\sqrt{1 - \cos^2 3A}}{\sqrt{1 - \sin^2 3A}}$$

$$\mathbf{g} (1 + \sin x)^2 + (1 - \sin x)^2 + 2\cos^2 x$$

h
$$\sin^4 \theta + \sin^2 \theta \cos^2 \theta$$

$$i \sin^4 \theta + 2\sin^2 \theta \cos^2 \theta + \cos^4 \theta$$

56. For x such that $0 < x < \frac{\pi}{2}$, the expression

$$\frac{\sqrt{1-\cos^2 x}}{\sin x} + \frac{\sqrt{1-\sin^2 x}}{\cos x}$$
 is equivalent to:

F. 0 **G.** 1

H. 2

J. $-\tan x$

K. $\sin 2x$

50. If $\cos\theta = \frac{6}{17}$ and $\tan\theta = \frac{5}{6}$, then $\sin\theta = ?$

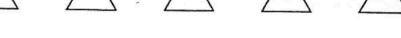
f.
$$\frac{5}{17}$$

g.
$$\frac{6}{5}$$

h.
$$\frac{17}{5}$$

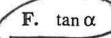
i.
$$\frac{5}{6}$$

j.
$$\frac{1}{2}$$



60. Whenever $\frac{2\cos\alpha\sin\alpha}{\cos^2\alpha+1-\sin^2\alpha}$ is defined, it simplifies to:

DO YOUR FIGURING HERE.



G. cot a

H. 2

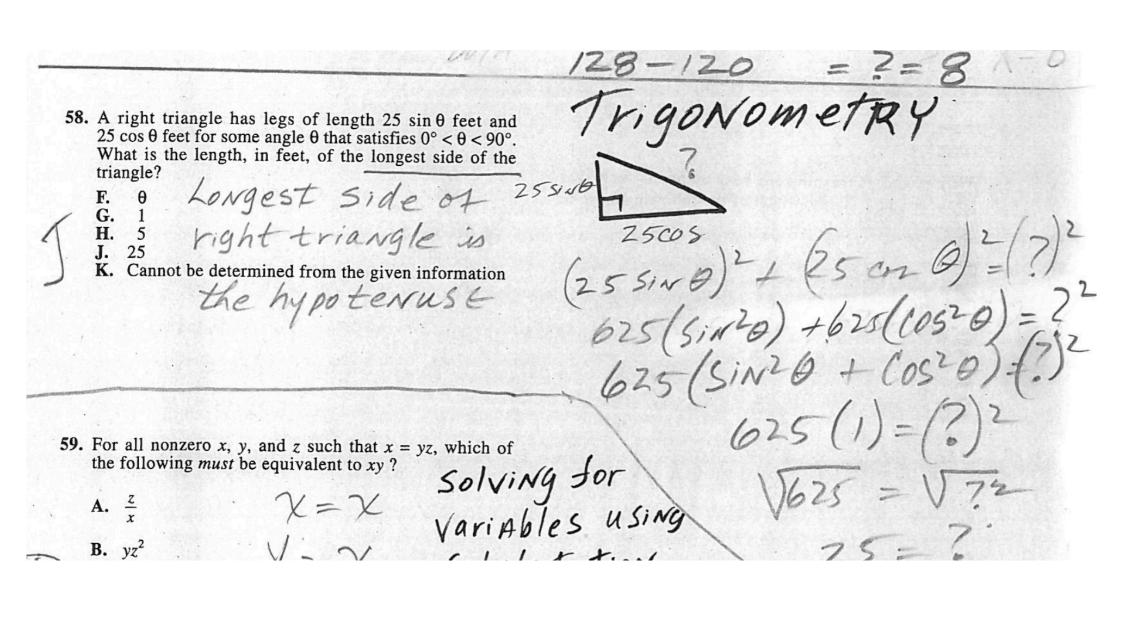
K. $\sin \alpha \cos \alpha$

ZCOSA Sind Cos2x + cos2x

2 cord Sind

2 cos2x

END OF TEST 2 STOP! DO NOT TURN THE PAGE UNTIL TOLD TO DO SO. DO NOT RETURN TO THE PREVIOUS TEST.



Example Question #2: How To Find The Tangent Of An Angle

Consider a right triangle with an inner angle $x\ (x < 90^\circ)$.

If

$$\cos x = \frac{3}{5}$$

and

$$\sin x = \frac{4}{5}$$

what is $\tan x$?

Possible Answers:

 $\frac{1}{5}$

5

 $\frac{4}{3}$

1

3

Correct answer:

 $\frac{4}{3}$

Explanation:

The tangent of an angle x is defined as

$$\tan x = \frac{\sin x}{\cos x}$$

Substituting the given values for $\cos x$ and $\sin x$, we get

$$\frac{4/5}{3/5} = 4/3$$

If the sine of an angle equals 2/3, and the cosine of the same angle equals 5/12, what is the tangent of the angle?

Possible Answers:

8/5

5/8

12/5

12/8

8/12

Correct answer:

8/5

Explanation:

$$Sine = \frac{opposite}{hypotenuse}$$
. $Cosine = \frac{adjacent}{hypotenuse}$. $Tangent = \frac{opposite}{adjacent}$

The cosine of the angle is 5/12 and since that is a reduced fraction, we know the hypotenuse is 12 and the adjacent side equals 5.

The sine of the angle equals 2/3, and since the hyptenuse is already 12 we know that we must multiply the numerator and denominator by 4 to get to common denominator of 12. Therefore, the opposite side equals 8.

Since $tangent = \frac{opposite}{}$, the answer is 8/5.

Simplify $(\cos\Theta - \sin\Theta)^2$

Possible Answers:

1 + cos2Θ

1 + sin2**Θ**

sin2**Θ** − 1

1 − sin2**Θ**

cos2**0** - 1

Correct answer:

1 − sin2**Θ**

Explanation:

Multiply out the quadratic equation to get $\cos\Theta^2$ – $2\cos\Theta\sin\Theta$ + $\sin\Theta^2$

Then use the following trig identities to simplify the expression:

 $\sin 2\Theta = 2\sin \Theta \cos \Theta$

 $\sin \Theta^2 + \cos \Theta^2 = 1$

 $1 - \sin 2\Theta$ is the correct answer for $(\cos \Theta - \sin \Theta)^2$

 $1 + \sin 2\Theta$ is the correct answer for $(\cos \Theta + \sin \Theta)^2$

Which of the following is equal to $\cos x * \csc x$?

Possible Answers:

cot x * sec x

cot x

tan x

 $sin \ x * sec \ x$

sec x

Correct answer:

cot x

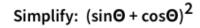
Explanation:

Here, we use the SOHCAHTOA ratios and the fact that $\csc x = 1 / \sin x$.

Cosine x = adjacent side length / hypotenuse length

Cosecant $x = 1 / \sin x = hypotenuse / opposite$

(Adjacent / hypotenuse) * (hypotenuse / opposite) = Adjacent / opposite = Cotangent x.



Possible Answers:

cos2Θ-1

1 + cos2Θ

1 + sin2**Θ**

None of the answers are correct

2sin⊖cos⊖ -1

Correct answer:

1 + sin2**Θ**

Explanation:

Using the foil method, multiply. Simplify using the Pythagorean identity $\sin^2\Theta + \cos^2\Theta = 1$ and the double angle identity $\sin^2\Theta = 2\sin\Theta\cos\Theta$.

Which of the following is equivalent to $cot(\theta)sec(\theta)sin(\theta)$
Possible Answers:
0
1
$\cot(oldsymbol{ heta})$
$tan(oldsymbol{ heta})$
$-sec(oldsymbol{ heta})$
Correct answer:
Explanation: The first thing to do is to breakdown the meaning of each trig function, $\cot = \cos/\sin$, $\sec = 1/\cos$, and $\sin = \sin$. Then put these back into the function and simplify if possible, so then $(\cos(\Theta)/\sin(\Theta))^*(1/\cos(\Theta))^*(\sin(\Theta)) = (\cos(\Theta)/\sin(\Theta))^*(\sin(\Theta))^*(\cos(\Theta)) = 1$, since they all cancel out.

Using trigonometry identities, simplify $\sin\theta\cos^2\theta - \sin\theta$

Possible Answers:

 $\cos^2\!\theta\!\sin\!\theta$

 $\text{cos}^3\pmb{\theta}$

None of these answers are correct

−sin $^3\theta$

 $\text{sin}^2\pmb{\theta}\text{cos}\pmb{\theta}$

Correct answer:

−sin³**θ**

Explanation:

Factor the expression to get $\sin \theta (\cos^2 \theta - 1)$.

The trig identity $\cos^2\theta + \sin^2\theta = 1$ can be reworked to becomes $\cos^2\theta - 1 = -\sin\theta$ resulting in the simplification of $-\sin^3\theta$.

Using trig identities, simplify $sin\theta + cot\theta cos\theta$

Possible Answers:

tan**0** cos²θ $csc\theta$ $sec\theta$ sin²θ Correct answer: $csc\theta$

Explanation:

Cot θ can be written as $\cos\theta/\sin\theta$, which results in $\sin\theta+\cos^2\theta/\sin\theta$.

Combining to get a single fraction results in $(\sin^2 \theta + \cos^2 \theta)/\sin \theta$.

Knowing that $\sin^2 \theta + \cos^2 \theta = 1$, we get $1/\sin \theta$, which can be written as $\csc \theta$.

Simplify $\sec^4 \Theta - \tan^4 \Theta$.

Possible Answers:

 $\sec^2 \Theta + \tan^2 \Theta$

 $\sec \Theta + \sin \Theta$

 $\cos \Theta - \sin \Theta$

 $\tan^2 \Theta - \sin^2 \Theta$

 $\sin \Theta + \cos \Theta$

Correct answer:

 $\sec^2 \Theta + \tan^2 \Theta$

Explanation:

Factor using the difference of two squares: $a^2 - b^2 = (a + b)(a - b)$

The identity $1 + \tan^2 \Theta = \sec^2 \Theta$ which can be rewritten as $1 = \sec^2 \Theta - \tan^2 \Theta$

So $\sec^4\boldsymbol{\varTheta} - \tan^4\boldsymbol{\varTheta} = (\sec^2\boldsymbol{\varTheta} + \tan^2\boldsymbol{\varTheta})(\sec^2\boldsymbol{\varTheta} - \tan^2\boldsymbol{\varTheta}) = (\sec^2\boldsymbol{\varTheta} + \tan^2\boldsymbol{\varTheta})(1) = \sec^2\boldsymbol{\varTheta} + \tan^2\boldsymbol{\varTheta}$

Simplify the following expression:

 $\frac{sin\theta}{cot\theta sec\theta}$

Possible Answers:

cscΘ

 $\cos^2\Theta$

sin²Θ

None of the answers are correct

 $tan\pmb{\Theta}$

Correct answer:

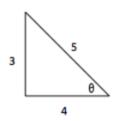
sin²Θ

Explanation:

Convert $\cot\Theta$ and $\sec\Theta$ to $\sin\Theta$ and $\cos\Theta$ and simplify the resulting complex fraction.

$$\cot \Theta = \underline{\cos \Theta}$$
 $\underline{\sec \Theta} = \underline{1}$

sin**Θ** cos**Θ**



Possible Answers:

 $\frac{3}{5}$

Correct answer:

Explanation:

To solve this question, you must know SOHCAHTOA. Sin divided by cosine is the tangent of the angle. Tan = opposite / adjacent = 3/4.

If the sine of an angle equals 2/3, and the cosine of the same angle equals 5/12, what is the tangent of the angle?

8/5

5/8

12/5

12/8

8/12

Correct answer:

8/5

Explanation:

$$Sine = \frac{opposite}{hypotenuse}$$
. $Cosine = \frac{adjacent}{hypotenuse}$. $Tangent = \frac{opposite}{adjacent}$

The cosine of the angle is 5/12 and since that is a reduced fraction, we know the hypotenuse is 12 and the adjacent side equals 5.

The sine of the angle equals 2/3, and since the hyptenuse is already 12 we know that we must multiply the numerator and denominator by 4 to get the common denominator of 12. Therefore, the opposite side equals 8.

Since
$$tangent = \frac{opposite}{adjacent}$$
, the answer is 8/5.